ในวิชา "วิทยาการคำนวณ" ระดับชั้น ม. 5
ได้ดึงวิชา data science (วิทยาศาสตร์ข้อมูล)
มาปูพื้นฐานให้เด็กๆ ได้เรียนกันแล้ว นับว่าเป็นโชคดี
เพราะวิชาพวกนี้เป็นของสูง กว่าจะสัมผัสก็คงตอนป.ตรี โท เอก
...Continue ReadingIn the subject of ′′ Calculation Theology ′′ class. 5
Pulled data science (data science)
Let's master the foundation for kids to learn. It's considered lucky.
Because these subjects are high to touch. It's probably in the middle of the year. Tri To Aek
Which I will review the content to read roughly. The content is divided into 4 chapters.
.
👉 ++++ Chapter 1-Information is valuable +++++
.
Data science in the textbook. Used by Thai name as ′′ Information Science ′′
This chapter will mention Big Data or big data with lots of valuable information.
And so much role in this 4.0 s both public and private sector.
.
If you can't imagine when you played Google search network, you'll find a lot of information that you can use in our business. This is why data science plays a very important role.
.
It's not surprising that it makes the Data Scientist s' career (British name data scientist) play the most important role and charming and interesting profession of the 21th century.
.
Data science, if in the book, he defines it
′′ Study of the process, method or technique to process enormous amounts of data to process to obtain knowledge, understand phenomena, or interpret prediction or prediction, find out patterns or trends from information.
and can be analysed to advise the right choice or take decision for maximum benefit
.
For Data science work, he will have the following steps.
- Questioning my own interest.
- Collect information.
- Data Survey
- Data Analysis (analyze the data)
- Communication and Results Visualization (Communicate and visualize the results)
.
🤔 Also he talks about design thinking... but what is it?
Must say the job of a data scientist
It doesn't end just taking the data we analyzed.
Let's show people how to understand.
.
The application design process is still required.
To use data from our analytics
The word design thinking is the idea. The more good designer it is.
Which Data Scientists Should Have To Design Final Applications
Will meet user demand
.
👉 ++++ Chapter 2 Collection and Exploration +++++
.
This chapter is just going to base.
2.1 Collection of data
In this chapter, I will talk about information that is a virtual thing.
We need to use this internet.
2.2 Data preparation (data preparation)
Content will be available.
- Data Cleaning (data cleansing)
- Data Transformation (data transformation)
In the university. 5 is not much but if in college level, you will find advanced technique like PCA.
- Info Link (combining data)
2.3 Data Exploration (data exploration)
Speaking of using graphs, let's explore the information e
Histogram graph. Box plot diagram (box plot). Distributed diagram (scatter plot)
With an example of programming, pulls out the plot to graph from csv (or xls) file.
2.4 Personal Information
For this topic, if a data scientist is implementing personal data, it must be kept secret.
.
Where the issues of personal information are now available. Personal Data Protection is Done
.
.
👉 ++++ Chapter 3 Data Analysis ++++
.
Divided into 2 parts:
.
3.1 descriptive analysis (descriptive analytics)
Analyzing using the numbers we've studied since
- Proportion or percentage
- Medium measurement of data, average, popular base.
Correlation (Correlation) relationship with programming is easy.
.
.
3.2 predictive analysis (predictive analytics)
.
- numeric prediction is discussed. (numeric prediction)
- Speaking of technique linear regression, a straight line equation that will predict future information.
Including sum of squared errors
Let's see if the straight line graph is fit with the information. (with programming samples)
- Finally mentioned K-NN (K-Nearest Neighbors: K-NN) is the closest way to finding K-N-Neighborhood for classification (Category)
*** Note *****
linear regression กับ K-NN
This is also an algorithm. One of the machine learning (machine learning, one branch of AI)
Kids in the middle of the day, I get to study.
.
.
👉 +++ Chapter 4 Making information pictured and communicating with information +++
.
This chapter doesn't matter much. Think about the scientist after analyzing what data is done. The end is showing it to other people by doing data visualization. (Better summoning)
.
In contents, it's for example using a stick chart, line chart, circular chart, distribution plan.
.
The last thing I can't do is tell a story from information (data story telling) with a message. Be careful when you present information.
.
.
.
*** this note ***
😗 Program language which textbooks mentioned and for example.
It's also python and R language
.
For R language, many people may not be familiar.
The IT graduate may be more familiar with Python.
But anyone from the record line will surely be familiar.
Because R language is very popular in statistical line
And it can be used in data science. Easy and popular. Python
.
But if people from data science move to another line of AI
It's deep learning (deep learning)
Python will be popular with eating.
.
.
#########
😓 Ending. Even I wrote a review myself, I still feel that.
- The university. 5 is it going to be hard? Can a child imagine? What did she do?
- Or was it right that I packed this course into Big Data era?
You can comment.
.
But for sure, both parents and teachers are tired.
Because it's a new content. It's real.
Keep fighting. Thai kids 4.0
.
Note in the review section of the university's textbook. 4 There will be 3 chapters. Read at.
https://www.facebook.com/programmerthai/photos/a.1406027003020480/2403432436613260/?type=3&theater
.
++++++++++++++++++++
Before leaving, let's ask for publicity.
++++++++++++++++++++
Recommend the book ′′ Artificial Intelligence (AI) is not difficult ′′
It can be understood by the number. End of book 1 (Thai language content)
Best seller ranked
In the MEB computer book category.
.
The contents will describe Artificial Intelligence (A) in view of the number. The end.
Without a code of dizzy
With colorful illustrations to see, easy to read.
.
If you are interested, you can order.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry, paper book. I don't have it yet. Sorry.
.
✍ Written by Thai programmer thai progammerTranslated
同時也有1部Youtube影片,追蹤數超過12萬的網紅prasertcbs,也在其Youtube影片中提到,การหาค่าเฉลี่ยเคลื่อนที่ Download a sample (Yummi2012) database file from http://goo.gl/p5JlUQ Download SQL script from http://goo.gl/eWDlzA เชิญสมัคร...
「python average」的推薦目錄:
- 關於python average 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳貼文
- 關於python average 在 紀老師程式教學網 Facebook 的最佳解答
- 關於python average 在 prasertcbs Youtube 的最讚貼文
- 關於python average 在 Python numpy 計算平均值mean/average | ShengYu Talk 的評價
- 關於python average 在 Finding the average of a list - Stack Overflow 的評價
- 關於python average 在 Python 3 Programming Tutorial: Average.py - YouTube 的評價
- 關於python average 在 Metrics/average_precision.py at master - GitHub 的評價
python average 在 紀老師程式教學網 Facebook 的最佳解答
我該先學哪種程式語言?一張圖就幫你說分明!
「我對程式設計有興趣,該先學哪種程式語言呢?」是我在這個粉絲頁上,被問得最多的問題之一。今天蠻慶幸找到一張圖,可以讓您靠著自問自答,像走地圖一樣地,找到最適合自己的語言。先給大家連結:
http://goo.gl/3xiNpl
首先,您可以從中央上方的「OK」字樣開始走。第一個自問的問題是:「您為什麼想學電腦語言呢?」可供選擇的答案,由最左邊到最右邊依序是:
1. 小孩有興趣 (For my kids)
2. 賺大錢 (Make Money)
3. 增強自己實力 (Improve Myself)
4. 我有興趣 (I'm interested)
5. 好玩而已 (Just for fun)
6. 我不知道,隨便幫我選一個 (I don't know, just pick one for me)
其中 :
(1) 的建議是「先學 Scratch 語言,然後再學 Python」。
(2) 的話會被再問「您是想找工作(Get a job)?還是有個創業點子(Startup idea)?」
(3), (4), (5) 會被問「您有心目中想走的領域嗎(網頁?手機?遊戲?...)」
(6) 會被問「您想輕鬆學?學點有用的?還是想學一技走天下的?」根據答案,會被建議學 Python、Java 或 C、以及 C++。
這張圖真的很好玩!也非常接近我平常建議他人如何挑選第一個程式語言的思路。所以非常建議初學者照著走走看,應該就能找到您的「The Language Right」 XD。
找到適合您的語言後,可以到圖的下方,看看您是甘道夫(Gandolf,作者戲稱 Java 語言類似甘道夫)還是精靈(Elf,C# 的戲稱)。還能找到該語言的普遍度(Popularity)與平均年薪(Average Salary,單位是美金)...呃,台灣地區的朋友請自動把年薪忽視吧!那種年薪您在台灣是找不到的...(嘆)
如果您對英文有點苦手的,可以留言在底下給我,我會協助您找到適合的語言喔!歡迎大家按讚鼓勵一下小弟,或分享給您 Facebook 的好友!
python average 在 prasertcbs Youtube 的最讚貼文
การหาค่าเฉลี่ยเคลื่อนที่
Download a sample (Yummi2012) database file from http://goo.gl/p5JlUQ
Download SQL script from http://goo.gl/eWDlzA
เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs
playlist สอน Microsoft SQL Server 2012, 2014, 2016, 2017 ► https://www.youtube.com/playlist?list=PLoTScYm9O0GH8gYuxpp-jqu5Blc7KbQVn
สอน PostgreSQL ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGi_NqmIu43B-PsxA0wtnyH
สอน MySQL ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFmJDsZipFCrY6L-0RrBYLT
playlist สอน SQLite ► https://www.youtube.com/playlist?list=PLoTScYm9O0GHjYJA4pfG38M5BcrWKf5s2
playlist การใช้ Excel ในการทำงานร่วมกับกับฐานข้อมูล (SQL Server, MySQL, Access) ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGA2sSqNRSXlw0OYuCfDwYk
playlist การเชื่อมต่อกับฐานข้อมูล (SQL Server, MySQL, SQLite) ด้วย Python ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEdZtHwU3t9k3dBAlxYoq59
#prasertcbs_SQL #prasertcbs
python average 在 Python numpy 計算平均值mean/average | ShengYu Talk 的推薦與評價
本篇紀錄如何使用python numpy 的np.mean 來計算平均值mean/average 的方法。 範例. 用numpy 計算平均值以下python 範例使用numpy 來計算平均 ... ... <看更多>